Search for European Projects

Nanochemistry and self-assembly routes to metamaterials for visible light (METACHEM)
Start date: Sep 15, 2009, End date: Sep 14, 2013 PROJECT  FINISHED 

The objective of the METACHEM collaborative project is to use the extreme versatility of nano-chemistry to design and manufacture bulk meta-materials exhibiting non-conventional electromagnetic properties in the range of visible light. This spectral domain requires nano-scale patterns, typically around 50 nm in size or less. Our strategy consists in designing and synthesizing ad-hoc nano particles as optical plasmonic nano-resonators and organising them through self-assembly methods in 2 or 3 dimensional networks in order to produce dense highly ordered structures at a nano-scale level. Several subprojects corresponding to different routes are proposed, all of them based on existing state-of-the-art chemical and self assembly methods. In addition, the important issue of losses inherent to the plasmonic response of the nano-objects is addressed in an original way by the adjunction of loss-compensating active gain media. A special effort is made on the difficult measurement of the non conventional meta-properties as they constitute the first demonstration of the validity of the concept. A technological and an industrial point are added towards the search of efficient, cost-effective and industrially feasible metamaterials. The key point of the METACHEM project joining 9 partners from 7 European states is that it brings together for the first time European experts of three complementary fields namely nanochemistry, self-assembly methods and metamaterials science. The majority of the partners are members of FP7 virtual institutes related to these fields i.e. respectively EMMI, SOFTCOMP and METAMORPHOSE II. Main goals: Design and synthesize optically isotropic meta-materials with exotic and extreme properties realized by simple and cheap chemical methods. Target properties: artificial optical magnetic and dielectric properties, optical left-handed materials, near-zero permittivity/permeability; negative index materials, low-loss plasmonic structures.
Up2Europe Ads



Project Website

8 Partners Participants