Search for European Projects

Chaos in Parabolic Dynamics: Mixing, Rigidity, Spectra (ChaParDyn)
Start date: Jan 1, 2014, End date: Dec 31, 2018 PROJECT  FINISHED 

"The theme of the proposal is the mathematical investigation of chaos (in particular ergodic and spectral properties) in parabolic dynamics, via analytic, geometric and probabilistic techniques. Parabolic dynamical systems are mathematical models of the many phenomena which display a ""slow"" form of chaotic evolution, in the sense that nearby trajectories diverge polynomially in time. In contrast with the hyperbolic case and with the elliptic case, there is no general theory which describes parabolic dynamical systems. Only few classical examples are well understood.The research plan aims at bridging this gap, by studying new classes of parabolic systems and unexplored properties of classical ones. More precisely, I propose to study parabolic flows beyond the algebraic set-up and infinite measure-preserving parabolic systems, both of which are very virgin fields of research, and to attack open conjectures and questions on fine chaotic properties, such as spectra and rigidity, for area-preserving flows. Moreover, connections between parabolic dynamics and respectively number theory, mathematical physics and probability will be explored. g New techniques, stemming from some recent breakthroughs in Teichmueller dynamics, spectral theory and infinite ergodic theory, will be developed.The proposed research will bring our knowledge significantly beyond the current state-of-the art, both in breadth and depth and will identify common features and mechanisms for chaos in parabolic systems. Understanding similar features and common geometric mechanisms responsible for mixing, rigidity and spectral properties of parabolic systems will provide important insight towards an universal theory of parabolic dynamics."

Looking for a partnership?
Have a look at
Ma Région Sud!