Search for European Projects

Bio-Inspired Approaches to Porous Inorganic Nanoparticles and Their Application as Targeted Drug Delivery Systems (PINSYS)
Start date: Sep 3, 2012, End date: Sep 2, 2014 PROJECT  FINISHED 

"This project will develop novel, bio-inspired routes to the synthesis of porous inorganic nanoparticles with sponge-like internal structures, using nanostructured polymer capsules as templates. The application of these structures in targeted drug delivery and controlled release will then be investigated. Biominerals provide a unique inspiration for the design and synthesis of new materials. While showing remarkable structures and properties, these amazing materials form in aqueous environments under ambient conditions and organic molecules – either as soluble additives or insoluble matrices – are used to control crystal growth. We will here employ a bio-inspired strategy to generate porous calcium carbonate and calcium phosphate nanoparticles with sponge-like structures. A novel class of polymer capsules with bicontinuous internal structures, which are formed by the self-assembly of comb-like block copolymers in water will be used as templates. This system will also provide a unique opportunity for studying the effect of confinement on crystal nucleation and growth. Crystallisation in confinement is widespread in Nature, the environment and technology, and the research will therefore impact on fundamental research and technology across many disciplines. The synthesised porous nanoparticles will then be used to build targeted drug delivery systems (DDSs) by encapsulating anti-cancer drugs for the treatment of bone cancer. While mesoporous silica nanoparticles have been investigated quite extensively, little work has to-date been performed on alternative nanoporous crystalline inorganic nanoparticles. As compared with mesoporous silica, the calcium phosphate and calcium carbonate nanoparticles will show superior biocompatibility and biodegradation, and will also offer acid-responsive solubility and therefore will give the pH-responsive release of the encapsulated drugs from the drug delivery system in the acidic environment of tumors."
Up2Europe Ads